JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease.

Neuromolecular Medicine 2023 Februrary 6
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app