Add like
Add dislike
Add to saved papers

Irigenin attenuates lipopolysaccharide-induced acute lung injury by inactivating the mitogen-activated protein kinase (MAPK) signaling pathway.

Acute lung injury (ALI) is a serious pulmonary inflammation disease with high mortality. Irigenin, an isoflavone from rhizomes of the Belamcanda chinensis , has been reported to exert anti-inflammatory, anti-oxidative, and anti-apoptotic activities in several diseases. However, it is still unclear whether irigenin can exert a beneficial effect in ALI. A network pharmacology method was utilized to predict the hub targets and potential therapeutic mechanisms of irigenin against ALI. Lipopolysaccharide (LPS) was used to establish the mice model of ALI for evaluating the effects of irigenin. According to the protein-protein interaction (PPI) network, we identified EGFR, HRAS, AKT1, SRC, and HSP90AA1 as the top five significant genes. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment assays showed that irigenin might affect inflammatory response, cytokine production, and cell death by the mitogen-activated protein kinase (MAPK) signaling pathway. In vivo experiment results manifested that irigenin decreased pathological changes, lung Wet/Dry weight ratio, and total protein content in bronchoalveolar lavage fluid (BALF). Irigenin also reduced the production of inflammatory cytokines, including tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-18 (IL-18), and neutrophil infiltration. Additionally, irigenin inhibited pulmonary apoptosis in LPS-treated ALI mice. Moreover, LPS-induced phosphorylation of p38, JNK, and ERK was significantly abated due to the treatment of irigenin. In summary, irigenin ameliorates LPS-induced ALI by suppressing pulmonary inflammation and apoptosis via inactivation of the MAPK signaling pathway. These findings indicated the therapeutic potential of irigenin in ALI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app