We have located links that may give you full text access.
Cardiac Rhabdomyoma in Four Göttingen Minipigs.
Toxicologic Pathology 2023 Februrary 1
Göttingen minipigs are increasingly used as an alternative large animal model in nonclinical toxicology studies, and proliferative lesions in this species are rare. Here, we report four cases of cardiac rhabdomyoma in Göttingen minipigs, an incidental and benign mass in the heart. Three cases lacked gross observations and had a microscopic nodule in either the left ventricle or interventricular septum. The last case had a large, firm, raised nodule on a left ventricular papillary muscle noted at necropsy, with additional microscopic intramural masses in the left ventricular wall. In all cases, microscopic evaluation revealed well-circumscribed, expansile nodules composed of bundles of large, highly vacuolated, ovoid to polygonal cells with variable cytoplasmic processes radiating from a centrally located nucleus. Cells displayed patchy accumulation of intracytoplasmic, PAS-positive material and haphazardly arranged cytoplasmic cross-striations. There was no evidence of cardiac insufficiency or other data to suggest the masses were clinically meaningful. Cardiac rhabdomyomas have been reported in meat-hybrid swine, with a breed predisposition in red wattle. This lesion is well established in guinea pigs, but documentation in other laboratory species used in toxicologic studies is limited to two beagle dogs. To our knowledge, this is the first report of spontaneous cardiac rhabdomyoma in Göttingen minipigs.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app