Add like
Add dislike
Add to saved papers

B-cell-intrinsic DNase1L3 is essential for T-cell-independent type II response in mice.

International Immunology 2023 January 24
T-cell independent type II (TI-II) antigens, such as capsular polysaccharides, have multivalent epitope, which induce B cell activation, plasma cell differentiation and antibody production by strongly cross-linking B-cell receptors. However, the mechanism of B cell activation by TI-II antigens remains unclear. In this study, we demonstrate that DNA endonuclease DNase1L3 (also termed DNase γ) is required for the TI-II response. The production of antigen-specific antibodies was severely diminished in DNase1L3-deficient mice upon immunization with TI-II antigens, but not with TD antigens. Bone-marrow chimeric mice and B cell transfer experiments revealed that B-cell-intrinsic DNase1L3 was required for the TI-II response. DNase1L3-deficient B cells were defective in cell proliferation and plasma cell differentiation in the TI-II response in vivo as well as in vitro, which was not rescued by co-culture with DNase1L3-sufficient B cells in vitro, disproving an involvement of a secretory DNase1L3. In vitro stimulation with TI-II antigen transiently increased expression of DNase1L3 and its translocation into the nucleus. RNA-seq analysis of ex vivo B cells having been responded to TI-II antigen in vivo revealed a marked reduction of Myc-target gene sets in DNase1L3-deficient B cells. Expression of IRF4, the gene of which Myc targets, was diminished in the ex vivo DNase1L3-deficient B cells, in which forced expression of IRF4 restored the TI-II response in vivo. These data revealed an unexpected role of DNase1L3 in a missing link between B-cell receptor signaling and B cell activation in the TI-II response, giving a valuable clue to molecularly dissect this response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app