Add like
Add dislike
Add to saved papers

Nonlinear Harmonic Distortion of Complementary Golay Codes.

Ultrasonic Imaging 2023 January 13
Recent advances in electronics miniaturization have led to the development of low-power, low-cost, point-of-care ultrasound scanners. Low-cost systems employing simple bi-level pulse generation devices need only utilize binary phase modulated coded excitations to significantly improve sensitivity; however the performance of complementary codes in the presence of nonlinear harmonic distortion has not been thoroughly investigated. Through simulation, it was found that nonlinear propagation media with little attenuative properties can significantly deteriorate the Peak Sidelobe Level (PSL) performance of complementary Golay coded pulse compression, resulting in PSL levels of -62 dB using nonlinear acoustics theory contrasted with -198 dB in the linear case. Simulations of 96 complementary pairs revealed that some pairs are more robust to sidelobe degradation from nonlinear harmonic distortion than others, up to a maximum PSL difference of 17 dB between the best and worst performing codes. It is recommended that users consider the effects of nonlinear harmonic distortion when implementing binary phase modulated complementary Golay coded excitations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app