A Prospective Study of Conventionally Fractionated Dose Constraints for Reirradiation of Primary Brain Tumors in Adults.
Practical Radiation Oncology 2022 December 32
PURPOSE: Dose constraints for reirradiation of recurrent primary brain tumors are not well-established. This study was conducted to prospectively evaluate composite dose constraints for conventionally fractionated brain reirradiation.
METHODS AND MATERIALS: A single-institution, prospective study of adults with previously irradiated, recurrent brain tumors was performed. For 95% of patients, electronic dosimetry records from the first course of radiation (RT1) were obtained and deformed onto the simulation computed tomography for the second course of radiation (RT2). Conventionally fractionated treatment plans for RT2 were developed that met protocol-assigned dose constraints for RT2 alone and the composite dose of RT1 + RT2. Prospective composite dose constraints were based on histology, interval since RT1, and concurrent bevacizumab. Patients were followed with magnetic resonance imaging including spectroscopy and perfusion studies. Primary endpoint was the rate of symptomatic brain necrosis at 6 months after RT2.
RESULTS: Patients were enrolled from March 2017 to May 2018; 20 were evaluable. Eighteen had glioma, 1 had atypical choroid plexus papilloma, and 1 had hemangiopericytoma. Nineteen patients were treated with volumetric modulated arc therapy, and one was treated with protons. Median RT1 dose was 57 Gy (range, 50-60 Gy). Median RT1-RT2 interval was 49 months (range, 9-141 months). Median RT2 dose was 42.4 Gy (range, 36-60 Gy). Median planning target volume was 186 cc (range, 8-468 cc). Nineteen of 20 patients (95%) were free of grade 3+ central nervous system necrosis. One patient had grade 3+ necrosis 2 months after RT2; the patient recovered fully and lived another 18 months until dying of disease progression. Median overall survival from RT2 start for all patients was 13.3 months (95% credible interval, 6.3-20.7); for patients with glioblastoma, 11.5 months (95% credible interval, 6.1-20.1).
CONCLUSIONS: Brain reirradiation can be safely performed with conventionally fractionated regimens tailored to previous dose distributions. The prospective composite dose constraints described here are a starting point for future studies of conventionally fractionated reirradiation.
METHODS AND MATERIALS: A single-institution, prospective study of adults with previously irradiated, recurrent brain tumors was performed. For 95% of patients, electronic dosimetry records from the first course of radiation (RT1) were obtained and deformed onto the simulation computed tomography for the second course of radiation (RT2). Conventionally fractionated treatment plans for RT2 were developed that met protocol-assigned dose constraints for RT2 alone and the composite dose of RT1 + RT2. Prospective composite dose constraints were based on histology, interval since RT1, and concurrent bevacizumab. Patients were followed with magnetic resonance imaging including spectroscopy and perfusion studies. Primary endpoint was the rate of symptomatic brain necrosis at 6 months after RT2.
RESULTS: Patients were enrolled from March 2017 to May 2018; 20 were evaluable. Eighteen had glioma, 1 had atypical choroid plexus papilloma, and 1 had hemangiopericytoma. Nineteen patients were treated with volumetric modulated arc therapy, and one was treated with protons. Median RT1 dose was 57 Gy (range, 50-60 Gy). Median RT1-RT2 interval was 49 months (range, 9-141 months). Median RT2 dose was 42.4 Gy (range, 36-60 Gy). Median planning target volume was 186 cc (range, 8-468 cc). Nineteen of 20 patients (95%) were free of grade 3+ central nervous system necrosis. One patient had grade 3+ necrosis 2 months after RT2; the patient recovered fully and lived another 18 months until dying of disease progression. Median overall survival from RT2 start for all patients was 13.3 months (95% credible interval, 6.3-20.7); for patients with glioblastoma, 11.5 months (95% credible interval, 6.1-20.1).
CONCLUSIONS: Brain reirradiation can be safely performed with conventionally fractionated regimens tailored to previous dose distributions. The prospective composite dose constraints described here are a starting point for future studies of conventionally fractionated reirradiation.
Full text links
Trending Papers
Carvedilol, probably the β-blocker of choice for everyone with cirrhosis and portal hypertension: But not so fast!Liver International : Official Journal of the International Association for the Study of the Liver 2023 June
The five types of glomerulonephritis classified by pathogenesis, activity, and chronicity (GN-AC).Nephrology, Dialysis, Transplantation 2023 May 23
Syndrome of Inappropriate Antidiuresis: From Pathophysiology to Management.Endocrine Reviews 2023 March 29
American Gastroenterological Association-American College of Gastroenterology Clinical Practice Guideline: Pharmacological Management of Chronic Idiopathic Constipation.Gastroenterology 2023 June
The future of intensive care: the study of the microcirculation will help to guide our therapies.Critical Care : the Official Journal of the Critical Care Forum 2023 May 17
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app