Add like
Add dislike
Add to saved papers

Intensive longitudinal mediation in Mplus.

Psychological Methods 2022 December 23
Much of the existing longitudinal mediation literature focuses on panel data where relatively few repeated measures are collected over a relatively broad timespan. However, technological advances in data collection (e.g., smartphones, wearables) have led to a proliferation of short duration, densely collected longitudinal data in behavioral research. These intensive longitudinal data differ in structure and focus relative to traditionally collected panel data. As a result, existing methodological resources do not necessarily extend to nuances present in the recent influx of intensive longitudinal data and designs. In this tutorial, we first cover potential limitations of traditional longitudinal mediation models to accommodate unique characteristics of intensive longitudinal data. Then, we discuss how recently developed dynamic structural equation models (DSEMs) may be well-suited for mediation modeling with intensive longitudinal data and can overcome some of the limitations associated with traditional approaches. We describe four increasingly complex intensive longitudinal mediation models: (a) stationary models where the indirect effect is constant over time and people, (b) person-specific models where the indirect effect varies across people, (c) dynamic models where the indirect effect varies across time, and (d) cross-classified models where the indirect effect varies across both time and people. We apply each model to a running example featuring a mobile health intervention designed to improve health behavior of individuals with binge eating disorder. In each example, we provide annotated Mplus code and interpretation of the output to guide empirical researchers through mediation modeling with this increasingly popular type of longitudinal data. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app