Add like
Add dislike
Add to saved papers

Salvia aucheri Exhibits Antihypertensive Activity in Hypertensive Rats.

AIMS: The present work aimed to assess the antihypertensive activity of Salvia aucheri.

BACKGROUND: Salvia aucheri (S. aucheri) is an aromatic and medicinal herb belonging to the Lamiaceae family. In Morocco, this plant is locally used for used to treat stomach, digestive disorders, rheumatism, and hypertension. Nevertheless, the effect of Salvia aucheri on hypertension has not yet been studied.

OBJECTIVE: The objective of this investigation was to evaluate the beneficial effect of the aqueous extract of S. aucheri leaves on arterial blood pressure, systolic blood pressure (SBP), mean blood pressure (MBP), diastolic blood pressure (DBP), and heart rate (HR) in normotensive and hypertensive rats. In addition, the effect of the aqueous extract of S. aucheri leaves on vasodilatation was assessed in isolated rat aortic rings with functional endothelium precontracted with epinephrine EP or KCl.

MATERIAL AND METHODS: The aqueous extract of the aerial parts of S. aucheri (AESA) was obtained, and its antihypertensive ability was pharmacologically investigated in L-NAME hypertensive and normotensive rats. The rats received AESA orally at two selected doses of 100 and 140 mg/kg for six hours (acute experiment) and seven days (sub-chronic). Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. Moreover, the vasorelaxant activity of AESA was performed in thoracic aortic ring rats. In addition, the mechanisms of action involved in the vasorelaxant effect were studied.

RESULTS: The results indicated that AESA significantly reduced the systolic, diastolic, and mean arterial blood pressure in hypertensive rats over both single and repeated oral administration. However, AESA did not change the blood pressure parameters in normotensive rats. Concerning the results of vasorelaxant activity, the results showed that AESA was able to provoke potent vasorelaxant ability, which seems to be mediated through direct nitric oxide (NO) and NO-cyclic guanosine monophosphate pathways.

CONCLUSION: The study elucidates the beneficial action of AESA as an antihypertensive and vasorelaxant agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app