Add like
Add dislike
Add to saved papers

De novo CLCN3 variants affecting Gly327 cause severe neurodevelopmental syndrome with brain structural abnormalities.

A recent study revealed that monoallelic missense or biallelic loss-of-function variants in the chloride voltage-gated channel 3 (CLCN3) cause neurodevelopmental disorders resulting in brain abnormalities. Functional studies suggested that some missense variants had varying gain-of-function effects on channel activity. Meanwhile, two patients with homozygous frameshift variants showed severe neuropsychiatric disorders and a range of brain structural abnormalities. Here we describe two patients with de novo CLCN3 variants affecting the same amino acid, Gly327 (p.(Gly327Ser) and p.(Gly327Asp)). They showed severe neurological phenotypes including global developmental delay, intellectual disability, hypotonia, failure to thrive, and various brain abnormalities. They also presented with characteristic brain and ophthalmological abnormalities, hippocampal and retinal degradation, which were observed in patients harboring homozygous loss-of-function variants. These findings were also observed in CLCN3-deficient mice, indicating that the monoallelic missense variant may also have a dominant negative effect. This study will expand the phenotypic spectrum of CLCN3-related disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app