JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Estimating Risk of Antidepressant Withdrawal from a Review of Published Data.

CNS Drugs 2023 Februrary
Adaptation of the brain to the presence of a drug predicts withdrawal on cessation. The outcome of adaptation is often referred to as 'physical dependence' in pharmacology, as distinct from addiction, although these terms have unfortunately become conflated in some diagnostic guides. Physical dependence to antidepressants may occur in some patients, consistent with the fact that some patients experience withdrawal effects from these medications. It is thought that longer duration of use, higher dose and specific antidepressants affect the risk of antidepressant withdrawal effects as they might cause greater adaptation of the brain. We searched PubMed for relevant systematic reviews and other relevant analyses to summarise existing data on determinants of antidepressant withdrawal incidence, severity and duration. Overall, data were limited. From survey data, increased duration of use was associated with an increased incidence and severity of withdrawal effects, consistent with some evidence from data provided by drug manufacturers. Duration of use may be related to duration of withdrawal effects but data are heterogenous and sparse. Serotonin and noradrenaline reuptake inhibitors and paroxetine are associated with higher risks than other antidepressants, though data for some antidepressants are lacking. Higher doses of antidepressant has some weak association with an increased risk of withdrawal, with some ceiling effects, perhaps reflecting receptor occupancy relationships. Past experience of withdrawal effects is known to predict future risk. Based on these data, we outline a preliminary rubric for determining the risk of withdrawal symptoms for a particular patient, which may have relevance for determining tapering rates. Given the limited scope of the current research, future research should aim to clarify prediction of antidepressant withdrawal risk, especially by examining the risk of withdrawal in long-term users of medication, as well as the severity and duration of effects, to improve the preliminary tool for predictive purposes. Further research into the precise adaptations in long-term antidepressant use may improve the ability to predict withdrawal effects for a particular patient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app