JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Potential core genes associated with COVID-19 identified via weighted gene co-expression network analysis.

Swiss Medical Weekly 2022 November 22
AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus belonging to the Coronaviridae family that causes coronavirus disease (COVID-19). This disease rapidly reached pandemic status, presenting a serious threat to global health. However, the detailed molecular mechanism contributing to COVID-19 has not yet been elucidated.

METHODS: The expression profiles, including the mRNA levels, of samples from patients infected with SARS-CoV-2 along with clinical data were obtained from the GSE152075 dataset in the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules, which were then implemented to evaluate the relationships between fundamental modules and clinical traits. The differentially expressed genes (DEGs), gene ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were evaluated using R software packages.

RESULTS: A total of 377 SARS-CoV-2-infected samples and 54 normal samples with available clinical and genetic data were obtained from the GEO database. There were 1444 DEGs identified between the sample types, which were used to screen out 11 co-expression modules in the WGCNA. Six co-expression modules were significantly associated with three clinical traits (SARS-CoV-2 positivity, age, and sex). Among the DEGs in two modules significantly correlated with SARS-CoV-2 positivity, enrichment was observed in the biological process of viral infection strategies (viral translation) in the GO analysis. The KEGG signalling pathway analysis demonstrated that the DEGs in the two modules were commonly enriched in oxidative phosphorylation, ribosome, and thermogenesis pathways. Moreover, a five-core gene set (RPL35A, RPL7A, RPS15, RPS20, and RPL17) with top connectivity with other genes was identified in the SARS-CoV-2 infection modules, suggesting that these genes may be indispensable in viral transcription after infection.

CONCLUSION: The identified core genes and signalling pathways associated with SARS-CoV-2 infection can significantly supplement the current understanding of COVID-19. The five core genes encoding ribosomal proteins may be indispensable in viral protein biosynthesis after SARS-CoV-2 infection and serve as therapeutic targets for COVID-19 treatment. These findings can be used as a basis for creating a hypothetical model for future experimental studies regarding associations of SARS-CoV-2 infection with ribosomal protein function.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app