Add like
Add dislike
Add to saved papers

Macrophages in the reticuloendothelial system inhibit early induction stages of mouse apolipoprotein A-II amyloidosis.

Amyloidosis refers to a group of degenerative diseases that are characterized by the deposition of misfolded protein fibrils in various organs. Deposited amyloid may be removed by a phagocyte-dependent innate immune system; however, the precise mechanisms during disease progression remain unclear. We herein investigated the properties of macrophages that contribute to amyloid degradation and disease progression using inducible apolipoprotein A-II amyloidosis model mice. Intravenously injected AApoAII amyloid was efficiently engulfed by reticuloendothelial macrophages in the liver and spleen and disappeared by 24 h. While cultured murine macrophages degraded AApoAII via the endosomal-lysosomal pathway, AApoAII fibrils reduced cell viability and phagocytic capacity. Furthermore, the depletion of reticuloendothelial macrophages before the induction of AApoAII markedly increased hepatic and splenic AApoAII deposition. These results highlight the physiological role of reticuloendothelial macrophages in the early stages of pathogenesis and suggest the maintenance of phagocytic integrity as a therapeutic strategy to inhibit disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app