Add like
Add dislike
Add to saved papers

Overexpression of miR-181a regulates the Warburg effect in triple-negative breast cancer.

OBJECTIVE: Triple-negative breast cancer (TNBC) is highly aggressive and leads to a poor prognosis. microRNA-181a (miR-181a) exhibits strong antineoplastic effects in many types of cancer. In this study, we examine the responses of human miR-181a-transfected TNBC cells and explore the mechanisms underlying the observed effects.

METHODS: A series of cellular assays were conducted using cells from the MDA-MB-231 TNBC line to assess the impact of miR-181a overexpression. The extracellular acidification rate, lactate production and glucose uptake were evaluated as a measure of aerobic glycolysis (i.e. the Warburg effect). The expressions of glycolysis-related gene were analyzed.

RESULTS: Viability, migration and survival of miR-181a-transfected MDA-MB-231 cells were all significantly reduced. miR-181a inhibited glycolysis in TNBC cells by reducing the rates of glucose uptake and lactate production and a substantial downregulation of factors known to contribute to the Warburg effect, including the serine/threonine kinase, AKT3, hypoxia-inducible factor-1α (HIF-1α) and progesterone receptor membrane component 1 (PGRMC1).

CONCLUSION: Our results demonstrate that miR-181a may regulate glycolysis in MDA-MB-231 TNBC cells, potentially via interference with components of the AKT3-HIF-1α and PGRMC1 pathways. These results suggest that miR-181a might be developed as a therapeutic agent for use in antineoplastic regimens directed at TNBC and PGRMC1-overexpressing breast cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app