ErbB4-encoded novel miRNAs act as tumor suppressors by regulating ErbB/PI3K signaling.
Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine 2022
BACKGROUND: ErbB/PI3K signaling is widely recognized as a critical modulator of malignancy and miRNAs have been found to play a crucial role in the regulation of this pathway.
OBJECTIVE: This study aimed to identify novel miRNAs related to the ErbBs loci and investigate the functional effects of these miRNAs on ErbB/PI3K signaling in cancer progression.
MATERIALS AND METHODS: Bioinformatics tools and RNA-seq data were used to discover novel miRNAs in breast and colon cancer cells. Gene expression levels were determined using RT-qPCR. Western blotting and dual-luciferase assays were used to identify the regulatory mechanism between ErbB4-miR1/2 and related genes. The effects of ErbB4-miR1/2 on cell proliferation, viability, ROS production, and migration were assessed by PI-flow cytometry, colony formation, MTT, ROS, scratch, and transwell assays in SKBR3 and SW480 cells.
RESULTS: MicroRNA prediction tools, RNA-seq data, RT-qPCR, and sequencing results identified ErbB4-miR1 and ErbB4-miR2 (ErbB4-miR1/2) as novel miRNAs encoded by ErbB4 gene. ErbB4-miR1/2 were downregulated in breast and colon tumor tissues and also in different cancerous cells. RT-qPCR and dual-luciferase assays revealed that ErbB2 and ErbB3 genes are regulated by ErbB4-miR1/2. Consistently, a decrease in the p-AKT/AKT protein ratio verified the suppressive effect of ErbB4-miR1/2 on ErbB/PI3K activity. Furthermore, ErbB4-miR1/2 overexpression suppressed cell proliferation, viability, and migration, and increased ROS production.
CONCLUSIONS: ErbB4-miR1/2 are novel tumor suppressor miRNAs which attenuate ErbB/PI3K signaling in breast and colon cancer cells.
OBJECTIVE: This study aimed to identify novel miRNAs related to the ErbBs loci and investigate the functional effects of these miRNAs on ErbB/PI3K signaling in cancer progression.
MATERIALS AND METHODS: Bioinformatics tools and RNA-seq data were used to discover novel miRNAs in breast and colon cancer cells. Gene expression levels were determined using RT-qPCR. Western blotting and dual-luciferase assays were used to identify the regulatory mechanism between ErbB4-miR1/2 and related genes. The effects of ErbB4-miR1/2 on cell proliferation, viability, ROS production, and migration were assessed by PI-flow cytometry, colony formation, MTT, ROS, scratch, and transwell assays in SKBR3 and SW480 cells.
RESULTS: MicroRNA prediction tools, RNA-seq data, RT-qPCR, and sequencing results identified ErbB4-miR1 and ErbB4-miR2 (ErbB4-miR1/2) as novel miRNAs encoded by ErbB4 gene. ErbB4-miR1/2 were downregulated in breast and colon tumor tissues and also in different cancerous cells. RT-qPCR and dual-luciferase assays revealed that ErbB2 and ErbB3 genes are regulated by ErbB4-miR1/2. Consistently, a decrease in the p-AKT/AKT protein ratio verified the suppressive effect of ErbB4-miR1/2 on ErbB/PI3K activity. Furthermore, ErbB4-miR1/2 overexpression suppressed cell proliferation, viability, and migration, and increased ROS production.
CONCLUSIONS: ErbB4-miR1/2 are novel tumor suppressor miRNAs which attenuate ErbB/PI3K signaling in breast and colon cancer cells.
Full text links
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app