Add like
Add dislike
Add to saved papers

Drug repurposing using meta-analysis of gene expression in Alzheimer's disease.

INTRODUCTION: Alzheimer's disease and other forms of dementia are disease that bring an increased global burden. However, the medicine developed to date remains limited. The purpose of this study is to predict drug repositioning candidates using a computational method that integrates gene expression profiles on Alzheimer's disease and compound-induced changes in gene expression levels.

METHODS: Gene expression data on Alzheimer's disease were obtained from the Gene Expression Omnibus (GEO) and we conducted a meta-analysis of their gene expression levels. The reverse scores of compound-induced gene expressions were computed based on the reversal relationship between disease and drug gene expression profiles.

RESULTS: Reversal genes and the candidate compounds were identified by the leave-one-out cross-validation procedure. Additionally, the half-maximal inhibitory concentration (IC50) values and the blood-brain barrier (BBB) permeability of candidate compounds were obtained from ChEMBL and PubChem, respectively.

CONCLUSION: New therapeutic target genes and drug candidates against Alzheimer's disease were identified by means of drug repositioning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app