JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

APELIN-13 AMELIORATES LPS-INDUCED ENDOTHELIAL-TO-MESENCHYMAL TRANSITION AND POST-ACUTE LUNG INJURY PULMONARY FIBROSIS BY SUPPRESSING TRANSFORMING GROWTH FACTOR-Β1 SIGNALING.

Shock 2023 January 2
The pathophysiology of acute respiratory distress syndrome (ARDS) involves cytokine storms, alveolar-capillary barrier destruction, and fibrotic progression. Pulmonary interstitial fibrosis is an important factor affecting the prognosis of ARDS patients. Endothelial-to-mesenchymal transition (EndMT) plays an important role in the development of fibrotic diseases, and the occurrence of EndMT has been observed in experimental models of LPS-induced acute lung injury (ALI). Apelin is an endogenous active polypeptide that plays an important role in maintaining endothelial cell homeostasis and inhibiting fibrotic progression in various diseases. However, whether apelin attenuates EndMT in ALI and post-ALI pulmonary fibrosis remains unclear. We analyzed the serum levels of apelin-13 in patients with sepsis-associated ARDS to examine its possible clinical value. A murine model of LPS-induced pulmonary fibrosis and an LPS-challenged endothelial cell injury model were used to analyze the protective effect and underlying mechanism of apelin-13. Mice were treated with apelin-13 by i.p. injection, and human pulmonary microvascular endothelial cells were incubated with apelin-13 in vitro . We found that the circulating apelin-13 levels were significantly elevated in sepsis-associated ARDS patients compared with healthy controls. Our study also confirmed that LPS induced EndMT progression and pulmonary fibrosis, which were characterized by decreased CD31 expression and increased α-smooth muscle actin expression and collagen deposition. LPS also stimulated the production of transforming growth factor β1 and activated the Smad signaling pathway. However, apelin-13 treatment significantly attenuated these changes. Our findings suggest that apelin-13 may be a novel biomarker in patients with sepsis-associated ARDS. These results demonstrate that apelin-13 ameliorates LPS-induced EndMT and post-ALI pulmonary fibrosis by suppressing transforming growth factor β1 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app