Add like
Add dislike
Add to saved papers

RecBCD enzyme and Chi recombination hotspots as determinants of self vs. non-self: Myths and mechanisms.

Bacteria face a challenge when DNA enters their cells by transformation, mating, or phage infection. Should they treat this DNA as an invasive foreigner and destroy it, or consider it one of their own and potentially benefit from incorporating new genes or alleles to gain useful functions? It is frequently stated that the short nucleotide sequence Chi (5' GCTGGTGG 3'), a hotspot of homologous genetic recombination recognized by Escherichia coli's RecBCD helicase-nuclease, allows E. coli to distinguish its DNA (self) from any other DNA (non-self) and to destroy non-self DNA, and that Chi is "over-represented" in the E. coli genome. We show here that these latter statements (dogmas) are not supported by available evidence. We note Chi's wide-spread occurrence and activity in distantly related bacterial species and phages. We illustrate multiple, highly non-random features of the genomes of E. coli and coliphage P1 that account for Chi's high frequency and genomic position, leading us to propose that P1 selects for Chi's enhancement of recombination, whereas E. coli selects for the preferred codons in Chi. We discuss other, previously described mechanisms for self vs. non-self determination involving RecBCD and for RecBCD's destruction of DNA that cannot recombine, whether foreign or domestic, with or without Chi.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app