Add like
Add dislike
Add to saved papers

Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI.

Pain Medicine 2022 October 32
STUDY DESIGN: In vivo retrospective study of fully automatic quantitative imaging feature extraction from clinically acquired lumbar spine magnetic resonance imaging (MRI).

OBJECTIVE: To demonstrate the feasibility of substituting automatic for human-demarcated segmentation of major anatomical structures in clinical lumbar spine MRI to generate quantitative image-based features and biomechanical models.

SETTING: Previous studies have demonstrated the viability of automatic segmentation applied to medical images; however, the feasibility of these networks to segment clinically acquired images has not yet been demonstrated, as they largely rely on specialized sequences or strict quality of imaging data to achieve good performance.

METHODS: Convolutional neural networks were trained to demarcate vertebral bodies, intervertebral disc, and paraspinous muscles from sagittal and axial T1-weighted MRIs. Intervertebral disc height, muscle cross sectional area, and subject-specific musculoskeletal models of tissue loading in the lumbar spine were then computed from these segmentations and compared against those computed from human-demarcated masks.

RESULTS: Segmentation masks, as well as the morphological metrics and biomechanical models computed from those masks, were highly similar between human- and computer-generated methods. Segmentations were similar with Dice Similarity Coefficients 0.77 or greater across networks, morphological metrics and biomechanical models were similar with Pearson R correlation coefficients 0.69 or greater when significant.

CONCLUSIONS: This study demonstrates the feasibility of substituting computer-generated for human-generated segmentations of major anatomical structures in lumbar spine MRI to compute quantitative image-based morphological metrics and subject-specific musculoskeletal models of tissue loading quickly, efficiently, and at scale without interrupting routine clinical care.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app