JOURNAL ARTICLE
REVIEW
Practical Implementation and Challenges of Artificial Intelligence-Driven Electronic Health Record Evaluation: Protected Health Information.
Advances in Chronic Kidney Disease 2022 September
Detecting protected health information in electronic health record systems is often an early step in health care analytics, and it is a nontrivial problem. Specific challenges include finding clinician names and diseases, which lack a fixed format and are often context-dependent. The general problem of finding entities, termed named-entity recognition, has received a substantial amount of attention in the natural language processing and deep learning communities. This paper begins by outlining recent methods for finding protected health information, and it then introduces a hybrid system which combines regular expressions with a natural language processing framework called FLAIR. FLAIR is open-source, it includes state-of-the-art deep learning models, and it supports straightforward development of new models for language tasks including named-entity recognition. Finally, there is a discussion of how to apply the system to structured text in a database table as well as unstructured text in clinical notes.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app