Add like
Add dislike
Add to saved papers

In silico studies on recreational drugs: 3D quantitative structure activity relationship prediction of classified and de novo designer benzodiazepines.

Currently, increasing availability and popularity of designer benzodiazepines (DBZDs) constitutes a primary threat to public health. To assess this threat, the biological activity/potency of DBZDs was investigated using in silico studies. Specific Quantitative Structure Activity Relationship (QSAR) models were developed in Forge™ for the prediction of biological activity (IC50 ) on the γ-aminobutyric acid A receptor (GABA-AR) of previously identified classified and unclassified DBDZs. A set of new potential ligands resulting from scaffold hopping studies conducted with MOE® was also evaluated. Two generated QSAR models (i.e. 3D-field QSAR and RVM) returned very good performance statistics (r2  = 0.98 [both] and q2  = 0.75 and 0.72, respectively). The DBZDs predicted to be the most active were flubrotizolam, clonazolam, pynazolam and flucotizolam, consistently with what reported in literature and/or drug discussion fora. The scaffold hopping studies strongly suggest that replacement of the pendant phenyl moiety with a five-membered ring could increase biological activity and highlight the existence of a still unexplored chemical space for DBZDs. QSAR could be of use as a preliminary risk assessment model for (newly) identified DBZDs, as well as scaffold hopping for the creation of computational libraries that could be used by regulatory bodies as support tools for scheduling procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app