Journal Article
Review
Add like
Add dislike
Add to saved papers

The Molecular Basis of 5α-Reductase Type 2 Deficiency.

The 5α-reductase type 2 enzyme catalyzes the conversion of testosterone into dihydrotestosterone, playing a crucial role in male development. This enzyme is encoded by the SRD5A2 gene, which maps to chromosome 2 (2p23), consists of 5 exons and 4 introns, and encodes a 254 amino acid protein. Disruptions in this gene are the molecular etiology of a subgroup of differences of sex development (DSD) in 46,XY patients. Affected individuals present a large range of external genitalia undervirilization, ranging from almost typically female external genitalia to predominantly typically male external genitalia with minimal undervirilization, including isolated micropenis. This is an updated review of the implication of the SRD5A2 gene in 5α-reductase type 2 enzyme deficiency. For that, we identified 451 cases from 48 countries of this particular 46,XY DSD from the literature with reported variants in the SRD5A2 gene. Herein, we present the SRD5A2 mutational profile, the SRD5A2 polymorphisms, and the functional studies related to SRD5A2 variants to detail the molecular etiology of this condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app