Add like
Add dislike
Add to saved papers

Improving cervical spinal cord lesion detection in multiple sclerosis using filtered fused proton density-T2 weighted images.

Background: Magnetic Resonance Imaging (MRI) is considered a vital in depicting multiple sclerosis (MS) lesions. Current studies demonstrate that proton density (PD) weighted images (WI) are superior to T2 WI in detecting MS lesions (plaques) in the spinal cord.

Purpose: To evaluate the diagnostic value of filtered fused PD/T2 weighted images in detecting cervical spinal cord MS lesions.

Material and Methods: In this retrospective study, we selected a sample size of 50 MS patients. Using contrast limited adaptive histogram equalization (CLAHE), a digital image processing filter was used on the (PD/T2) fused images. The produced images were inspected and compared to the original PD images by two experienced neuroradiologists using interobserver and intraobserver. An ROI analysis was also performed on the processed and original PD images.

Results: The repeatability measurement of the match between the two examinations was highly consistent for both neuroradiologists. The repeatability for both neuroradiologists was 96.05%, and the error measurement was 3.95%. The reproducibility measurement of the neuroradiologist's evaluation shows that the processed images could help to identify lesions better [excellent (84.87%)] than PD images [good (61.19%)]. ROIs analysis was performed on 113 MS lesions and normal areas in different images within the sample size. It revealed an enhanced ratio of 2.2 between MS lesions and normal spinal cord tissue in processed fused images compared to 1.34 in PD images.

Conclusion: The processed images of the fused images (PD/T2) have superior diagnostic sensitivity for MS lesions in the cervical spine than PD images alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app