Add like
Add dislike
Add to saved papers

Structure-Functional Selectivity Relationship Studies on A-86929 Analogs and Small Aryl Fragments toward the Discovery of Biased Dopamine D1 Receptor Agonists.

Dopamine regulates normal functions such as movement, reinforcement learning, and cognition, and its dysfunction has been implicated in multiple psychiatric and neurological disorders. Dopamine acts through D1- (D1R and D5R) and D2-class (D2R, D3R, and D4R) receptors and activates both G protein- and β-arrestin-dependent signaling pathways. Current dopamine receptor-based therapies are used to ameliorate motor deficits in Parkinson's disease or as antipsychotic medications for schizophrenia. These drugs show efficacy for ameliorating only some symptoms caused by dopamine dysfunction and are plagued by debilitating side effects. Studies in primates and rodents have shown that shifting the balance of dopamine receptor signaling toward the arrestin pathway can be beneficial for inducing normal movement, while reducing motor side effects such as dyskinesias, and can be efficacious at enhancing cognitive function compared to balanced agonists. Several structure-activity relationship (SAR) studies have embarked on discovering β-arrestin-biased dopamine agonists, focused on D2 partial agonists, noncatechol D1 agonists, and mixed D1/D2R dopamine receptor agonists. Here, we describe an SAR study to identify novel D1R β-arrestin-biased ligands using A-86929, a high-affinity D1R catechol agonist, as a core scaffold to identify chemical motifs responsible for β-arrestin-biased activity at both D1 and D2Rs. Most of the A-86929 analogs screened were G protein-biased, but none of them were exclusively arrestin-biased. Additionally, various small-fragment molecular probes displayed weak bias toward the β-arrestin pathway. Continued in-depth SFSR (structure-functional selectivity relationship) studies informed by structure determination, molecular modeling, and mutagenesis studies will facilitate the discovery of potent and efficacious arrestin-biased dopamine receptor ligands.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app