Add like
Add dislike
Add to saved papers

Growth differentiation factor 11 induces skeletal muscle atrophy via a STAT3-dependent mechanism in pulmonary arterial hypertension.

Skeletal Muscle 2022 May 7
Skeletal muscle wasting is a clinically remarkable phenotypic feature of pulmonary arterial hypertension (PAH) that increases the risk of mortality. Growth differentiation factor 11 (GDF11), centrally involved in PAH pathogenesis, has an inhibitory effect on skeletal muscle growth in other conditions. However, whether GDF11 is involved in the pathogenesis of skeletal muscle wasting in PAH remains unknown. We showed that serum GDF11 levels in patients were increased following PAH. Skeletal muscle wasting in the MCT-treated PAH model is accompanied by an increase in circulating GDF11 levels and local catabolic markers (Fbx32, Trim63, Foxo1, and protease activity). In vitro GDF11 activated phosphorylation of STAT3. Antagonizing STAT3, with Stattic, in vitro and in vivo, could partially reverse proteolytic pathways including STAT3/socs3 and iNOS/NO in GDF11-meditated muscle wasting. Our findings demonstrate that GDF11 contributes to muscle wasting and the inhibition of its downstream molecule STAT3 shows promise as a therapeutic intervention by which muscle atrophy may be directly prevented in PAH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app