Add like
Add dislike
Add to saved papers

Functional Analysis of Mmd2 and Related PAQR Genes During Sex Determination in Mice.

INTRODUCTION: Sex determination in eutherian mammals is controlled by the Y-linked gene Sry, which drives the formation of testes in male embryos. Despite extensive study, the genetic steps linking Sry action and male sex determination remain largely unknown. Here, we focused on Mmd2, a gene that encodes a member of the progestin and adipoQ receptor (PAQR) family. Mmd2 is expressed during the sex-determining period in XY but not XX gonads, suggesting a specific role in testis development.

METHODS: We used CRISPR to generate mouse strains deficient in Mmd2 and its 2 closely related PAQR family members, Mmd and Paqr8, which are also expressed during testis development. Following characterization of Mmd2 expression in the developing testis, we studied sex determination in embryos from single knockout as well as Mmd2;Mmd and Mmd2;Paqr8 double knockout lines using quantitative RT-PCR and immunofluorescence.

RESULTS: Analysis of knockout mice deficient in Sox9 and Nr5a1 revealed that Mmd2 operates downstream of these known sex-determining genes. However, fetal testis development progressed normally in Mmd2-null embryos. To determine if other genes might have compensated for the loss of Mmd2, we analyzed Paqr8 and Mmd-null embryos and confirmed that in both knockout lines, sex determination occurred normally. Finally, we generated Mmd2;Mmd and Mmd2;Paqr8 double-null embryos and again observed normal testis development.

DISCUSSION: These results may reflect functional redundancy among PAQR factors, or their dispensability in gonadal development. Our findings highlight the difficulties involved in identifying genes with a functional role in sex determination and gonadal development through expression screening and loss-of-function analyses of individual candidate genes and may help to explain the paucity of genes in which variations have been found to cause human disorders/differences of sex development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app