Add like
Add dislike
Add to saved papers

E2 + norethisterone promotes the PI3K-AKT pathway via PGRMC1 to induce breast cancer cell proliferation.

OBJECTIVE: This study aimed to find evidence that progesterone receptor membrane component 1 (PGRMC1) promotes estradiol (E2) + norethisterone (NET)-induced breast cancer proliferation through activation of the phosphatidylinositol-3-kinase (PI3K)-AKT pathway.

METHODS: PGRMC1-mediated breast cancer cellular proliferation and phosphorylation of PGRMC1 were studied using wild-type (hemagglutinin [HA]-tagged) MCF-7 cells, which were stably transfected with expression vector containing HA (MCF-7-HA cells), PGRMC1 (MCF-7-PGRMC1 cells) and Ser181 point mutated PGRMC1 (MCF-7-PGRMC1-S181A cells). Bioinformatics, cell proliferation, western blot, isobaric tags for relative and absolute quantitation (iTRAQ)-based RNA sequencing, real-time quantitative polymerase chain reaction (RT-qPCR) and cell cycle in vitro assays were performed to indicate the function of PGRMC1 and its possible mechanisms in breast cancer.

RESULTS: NET + E2 elicited a significant proliferation in MCF-7-Vec at 10-6 M and 10-10 M, respectively. MCF-7-PGRMC1 did increase the phosphorylation of AKT or ERK, which can be blocked by treatment with casein kinase 2 (CK2) inhibitor quinalizarin or in MCF-7-PGRMC1-S181A cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the PI3K-AKT pathway is upregulated in MCF-7-PGRMC1 cells. Importantly, upregulation of the PI3K-AKT pathway mainly through promotion of cell cycle regulation strongly promoted cell proliferation in MCF-7-PGRMC1 cells.

CONCLUSIONS: CK2 is involved in phosphorylation of PGRMC1 at S181. The mechanism for the action of PGRMC1 for mediating proliferative progestogen effects obviously starts with promotion cell cycle regulation, and then activation of the PI3K-AKT pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app