We have located links that may give you full text access.
Journal Article
Research Support, Non-U.S. Gov't
Distinct stress-related medial prefrontal cortex activation in women with depression with and without childhood maltreatment.
Depression and Anxiety 2022 April
BACKGROUND: Emerging evidence has highlighted the moderating effect of childhood maltreatment (CM) in shaping neurobiological abnormalities in major depressive disorder (MDD). However, whether neural mechanisms underlying stress sensitivity in MDD are affected by the history of CM is unclear.
METHODS: Two hundred and thirteen medication-free female participants were recruited for a functional magnetic resonance imaging study assessing the effects of psychosocial stress on neural responses. The Montreal Imaging Stress Task was administrated to 44 female MDD patients with CM (MDD/CM), 32 female MDD patients without CM (MDD/noCM), 43 female healthy controls (HCs) with CM (HC/CM), and 94 female HCs without CM (HC/noCM). A CM (CM, noCM) × diagnosis (MDD, HC) whole-brain voxel-wise analysis was run to assess putative group differences in neural stress responses.
RESULTS: A significant CM × Diagnosis interaction emerged in the medial prefrontal cortex (mPFC). Bonferroni-corrected simple effects analysis clarified that (1) the MDD/CM group had less mPFC deactivation than the HC/CM group, (2) the MDD/noCM group exhibited greater mPFC deactivation than the HC/noCM group, and (3) the MDD/CM group exhibited less mPFC deactivation relative to the MDD/noCM group. In addition, the mPFC-seed psychophysiological interaction analysis revealed that individuals in the CM groups had significantly greater stress-related mPFC-left superior frontal gyrus and mPFC-right posterior cerebellum connectivity relative to the noCM groups.
CONCLUSIONS: Findings highlight distinct neural abnormalities in MDD depending on prior CM history, particularly potentiated stress-related mPFC recruitment among MDD individuals reporting CM. Moreover, CM history was generally associated with the disruption in functional connectivity centered on the mPFC.
METHODS: Two hundred and thirteen medication-free female participants were recruited for a functional magnetic resonance imaging study assessing the effects of psychosocial stress on neural responses. The Montreal Imaging Stress Task was administrated to 44 female MDD patients with CM (MDD/CM), 32 female MDD patients without CM (MDD/noCM), 43 female healthy controls (HCs) with CM (HC/CM), and 94 female HCs without CM (HC/noCM). A CM (CM, noCM) × diagnosis (MDD, HC) whole-brain voxel-wise analysis was run to assess putative group differences in neural stress responses.
RESULTS: A significant CM × Diagnosis interaction emerged in the medial prefrontal cortex (mPFC). Bonferroni-corrected simple effects analysis clarified that (1) the MDD/CM group had less mPFC deactivation than the HC/CM group, (2) the MDD/noCM group exhibited greater mPFC deactivation than the HC/noCM group, and (3) the MDD/CM group exhibited less mPFC deactivation relative to the MDD/noCM group. In addition, the mPFC-seed psychophysiological interaction analysis revealed that individuals in the CM groups had significantly greater stress-related mPFC-left superior frontal gyrus and mPFC-right posterior cerebellum connectivity relative to the noCM groups.
CONCLUSIONS: Findings highlight distinct neural abnormalities in MDD depending on prior CM history, particularly potentiated stress-related mPFC recruitment among MDD individuals reporting CM. Moreover, CM history was generally associated with the disruption in functional connectivity centered on the mPFC.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app