Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning.
The heterogeneity of brain tumours at the molecular, metabolic and structural levels poses significant challenge for accurate tissue characterisation. Artificial intelligence and radiomics have emerged as valuable tools to analyse quantitative features extracted from medical images which capture the complex microenvironment of brain tumours. In particular, a number of computational tools including machine learning algorithms have been proposed for image preprocessing, tumour segmentation, feature extraction, classification, and prognostic stratifications as well. In this chapter, we explore the fundamentals of multiparametric brain tumour characterisation, as an understanding of the strengths, limitations and applications of these tools allows clinicians to better develop and evaluate models with improved diagnostic and prognostic value in brain tumour patients.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app