Add like
Add dislike
Add to saved papers

Machine Learning-Based Radiomics in Neuro-Oncology.

In the last decades, modern medicine has evolved into a data-centered discipline, generating massive amounts of granular high-dimensional data exceeding human comprehension. With improved computational methods, machine learning and artificial intelligence (AI) as tools for data processing and analysis are becoming more and more important. At the forefront of neuro-oncology and AI-research, the field of radiomics has emerged. Non-invasive assessments of quantitative radiological biomarkers mined from complex imaging characteristics across various applications are used to predict survival, discriminate between primary and secondary tumors, as well as between progression and pseudo-progression. In particular, the application of molecular phenotyping, envisioned in the field of radiogenomics, has gained popularity for both primary and secondary brain tumors. Although promising results have been obtained thus far, the lack of workflow standardization and availability of multicenter data remains challenging. The objective of this review is to provide an overview of novel applications of machine learning- and deep learning-based radiomics in primary and secondary brain tumors and their implications for future research in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app