Journal Article
Review
Add like
Add dislike
Add to saved papers

The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology.

In recent years, artificial intelligence (AI) has found numerous applications in cardiology due in part to large digitized datasets and the evolution of high performance computing. In the discipline of cardiac electrophysiology (EP), a number of clinical, imaging, and electrical waveform data are considered in the diagnosis, prognostication and management of arrhythmias, which lend themselves well to automation through AI. But equally relevant, AI offers a unique opportunity to discover novel EP concepts and improve clinical care through its inherent, hierarchical tenets of self-learning. This review will focus on the application of AI in clinical EP and summarize state-of-the art, large, clinical studies in the following key domains: (1) ECG-based arrhythmia and disease classification, (2) atrial fibrillation source detection, (3) substrate and risk assessment for atrial fibrillation and ventricular tachyarrhythmias, and (4) predicting outcomes after cardiac resynchronization therapy. Many are small, single-center, proof-of-concept investigations, but they still demonstrate groundbreaking performance of deep learning, a subdomain of AI, which surpasses traditional statistical analysis. Larger studies, for instance classifying arrhythmias from ECG recordings, have further provided external validation of their high accuracy. Ultimately, the performance of AI is dependent on the quality of the input data and the rigor of algorithm development. The field is still nascent and several barriers will need to be overcome, including prospective validation in large, well-labelled datasets and more seamless information technology-based data collection/integration, before AI can be adopted into broader clinical EP practice. This review will conclude with a discussion of these challenges and future work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app