Add like
Add dislike
Add to saved papers

Positive charge in the complementarity-determining regions of synthetic nanobody prevents aggregation.

In the past, specificity and affinity were the priority for synthetic antibody library. However, therapeutic antibodies need good stability for medical use. Through carefully adjust the chemical diversity in CDRs, one hopes to design a synthetic antibody library with good developability. Here we thoroughly analyzed 296 nanobody sequences and structures, constructed a fully-functional synthetic nanobody library, evaluated the relationship between aggregation and isoelectric point, and found that high-pI nanobodies were more resistant to aggregation than low-pIs. As we used the same framework for constructing the library, CDRs charge played a crucial role in mediating nanobody aggregation. We also analyzed the theoretical pI of 296 nanobodies from PDB, about 75% had basic pI, only 25% were acidic. Those results provided useful guidelines for designing next-generation synthetic nanobody libraries and for identifying potent and safe nanobody therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app