Add like
Add dislike
Add to saved papers

Modulators of Immunoregulatory Exonucleases PLD3 and PLD4 Identified by High-Throughput Screen.

PLD3 and PLD4 have recently been revealed to be endosomal exonucleases that regulate the innate immune response by digesting the ligands of nucleic acid sensors. These enzymes can suppress RNA and DNA innate immune sensors like toll-like receptor 9, and PLD4-deficent mice exhibit inflammatory disease. Targeting these immunoregulatory enzymes presents an opportunity to indirectly regulate innate immune nucleic acid sensors that could yield immunotherapies, adjuvants, and nucleic acid drug stabilizers. To aid in delineating the therapeutic potential of these targets, we have developed a high-throughput fluorescence enzymatic assay to identify modulators of PLD3 and PLD4. Screening of a diversity library (N = 17952) yielded preferential inhibitors of PLD3 and PLD4 in addition to a PLD3 selective activator. The modulation models of these compounds were delineated by kinetic analysis. This work presents an inexpensive and simple method to identify modulators of these immunoregulatory exonucleases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app