Add like
Add dislike
Add to saved papers

Blockade of CHRNB2 signaling with a therapeutic monoclonal antibody attenuates the aggressiveness of gastric cancer cells.

Oncogene 2021 July 31
Here, we evaluated the therapeutic potential of antibodies (Abs) targeting cholinergic receptor nicotinic beta 2 subunit (CHRNB2) in gastric cancer. To investigate the effects of these Abs on malignant phenotypes in vitro and in mouse xenograft models, we generated gene knockouts through genome editing, performed RNA interference-mediated knockdown of gene expression, and ectopically expressed CHRNB2 in gastric cancer cells. The effects of anti-CHRNB2 Abs on the proliferation of cancer cells were evaluated both in vitro and in vivo. We determined the effects of Chrnb2 deficiency on mice and the clinical significance of CHRNB2 expression in gastric cancer clinical specimens. Knockdown of CHRNB2 attenuated gastric cancer cell proliferation, whereas forced overexpression of CHRNB2 increased cell proliferation. Knockout of CHRNB2 significantly influenced cell survival and functions associated with metastasis. The effects of polyclonal Abs targeting the C- and N-termini of CHRNB2 guided the development of anti-CHRNB2 monoclonal Abs that inhibited the growth of gastric cancer cells in vitro and in vivo. Pathway analysis revealed that CHRNB2 interfered with signaling through the PI3K-AKT and JAK-STAT pathways. Chrnb2-deficient mice exhibited normal reproduction, organ functions, and motor functions. CHRNB2 regulates multiple oncological phenotypes associated with metastasis, and blockade of CHRNB2 expression using specific Abs shows promise for controlling metastasis in gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app