Add like
Add dislike
Add to saved papers

Computational model of endochondral ossification: simulating growth of a long bone.

Bone 2021 July 28
Mechanical loading is a crucial factor in joint and bone development. Using a computational model, we investigated the role of mechanics on cartilage growth rate, ossification of the secondary center, formation of the growth plate, and overall bone shape. A computational algorithm was developed and implemented into finite element models to simulate the endochondral ossification for symmetric and asymmetric motion in a generic diarthrodial joint. Under asymmetric loading condition the secondary center ossifies asymmetrically leaning toward the external load and results in tilted growth plate. Also the mechanics seems to have greater influence in the early onset of the ossification of the secondary center rather than later progression of the center. While previous models have simulated select stages of skeletal development, our model can simulate growth and ossification during the entirety of post-natal development. Such computational models of skeletal development may provide insight into specific loading conditions that cause bone and joint deformities, and the required timing for rehabilitative repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app