Add like
Add dislike
Add to saved papers

Metabolic profiling of nanosilver toxicity in the gills of common carp.

Studies have shown silver nanoparticles (AgNPs) exposure can result in a series of toxic effects in fish gills. However, it is still unclear how AgNPs affect metabolite expression and their related molecular metabolic pathways in fish gills. In this study, we employed untargeted metabolomics to study the effects of AgNPs and silver supernatant ions on fish gill metabolites. The results showed that AgNPs can induce significant changes in 96 differentially expressed metabolites, which mainly affect amino acid metabolism and energy metabolism in fish gills. Among these metabolites, AgNPs specifically induce significant changes in 72 differentially expressed metabolites, including L-histidine, L-isoleucine, L-phenylalanine, and citric acid. These metabolites were significantly enriched in the pathways of aminoacyl-tRNA biosynthesis, ABC transporters, and the citrate cycle. In contrast, Ag+ supernatant exposure can specifically induce significant changes in 14 differentially expressed metabolites that mainly interfere with sphingolipid metabolism in fish gills. These specifically regulated fish gill metabolites include sphinganine, sphingosine, and phytosphingosine, which were significantly enriched in the sphingolipid metabolism pathway. Our results clearly reveal the effects and potential toxicity mechanisms of AgNPs on fish gill metabolites. Furthermore, our study further determined the unique functions of released silver ions in AgNPs toxicity in fish gills.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app