Add like
Add dislike
Add to saved papers

Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy.

Annals of Neurology 2021 July 21
OBJECTIVE: Unidentified mechanisms largely restrict the viability of effective therapies in pharmacoresistant epilepsy. Our previous study revealed that hyperactivity of the subiculum is crucial for the genesis of pharmacoresistance in temporal lobe epilepsy (TLE), but the underlying molecular mechanism is not clear.

METHODS: Here, we examined the role of subicular caspase-1, a key neural pro-inflammatory enzyme, in pharmacoresistant TLE.

RESULTS: We found that the expression of activated caspase-1 in the subiculum, but not the CA1, was upregulated in pharmacoresistant amygdaloid-kindled rats. Early overexpression of caspase-1 in the subiculum was sufficient to induce pharmacoresistant TLE in rats, whereas genetic ablation of caspase-1 interfered with the genesis of pharmacoresistant TLE in both kindled rats and kainic acid-treated mice. The pro-pharmacoresistance effect of subicular caspase-1 was mediated by its downstream inflammasome-dependent interleukin-1β. Further electrophysiological results showed that inhibiting caspase-1 decreased the excitability of subicular pyramidal neurons through influencing the excitation/inhibition balance of pre-synaptic input. Importantly, a small-molecular caspase-1 inhibitor CZL80 attenuated seizures in pharmacoresistant TLE models, and decreased the neural excitability in the brain slices obtained from pharmacoresistant TLE patients.

INTERPRETATION: These results support the subicular caspase-1-interleukin-1β inflammatory pathway as a novel alternative mechanism hypothesis for pharmacoresistant TLE, and present caspase-1 as a potential target. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app