Perioperative Anomalous Pulmonary Venous Return Evaluation With Low-Dose Cardiac Computed Tomography.
BACKGROUND: Low-dose multidetector computed tomographic angiography (MDCTA) is playing an increasingly larger role in the diagnosis of anomalous pulmonary venous return (APVR). Despite advances in new computed tomographic (CT) techniques with radiation dose reduction, there are limited studies describing radiation dose parameters to allow routine use of cardiac CT in infants and children with APVR. This study compares cardiac CT findings with intraoperative findings and describes comprehensive radiation exposure parameters.
METHODS: A retrospective analysis of 27 patients compared MDCTA and intraoperative or cardiac catheterization findings of the pulmonary venous anatomy.
RESULTS: A total of 32 MDCTA studies were performed on these 27 patients. Of the 28 studies with subsequent intervention, MDCTA accurately diagnosed the anomalous pulmonary venous anatomy in 27 (96.4%) patients. Narrowing of the pulmonary venous confluence entrance to the coronary sinus was missed on cardiac CT in one patient due to motion artifact, but it was noted intraoperatively. Median estimated effective radiation dose was 0.98 mSv (range: 0.39-3.2 mSv), and mean estimated effective radiation dose was 1.1 ± 0.68 mSv. Median total dose length product (DLP) was 25 mGy cm (range: 10-83 mGy cm), and mean total DLP was 28 ± 18 mGy cm. Median CTDI volume was 3.8 mGy (range: 2.5-14.6 mGy), and mean CTDI volume was 5.0 ± 3.2 mGy.
CONCLUSIONS: We conclude that modern cardiac MDCTA is the best imaging modality to guide management in both preintervention and postintervention APVR patients. In this study, we describe comprehensive radiation exposure parameters in infants and children with APVR.
METHODS: A retrospective analysis of 27 patients compared MDCTA and intraoperative or cardiac catheterization findings of the pulmonary venous anatomy.
RESULTS: A total of 32 MDCTA studies were performed on these 27 patients. Of the 28 studies with subsequent intervention, MDCTA accurately diagnosed the anomalous pulmonary venous anatomy in 27 (96.4%) patients. Narrowing of the pulmonary venous confluence entrance to the coronary sinus was missed on cardiac CT in one patient due to motion artifact, but it was noted intraoperatively. Median estimated effective radiation dose was 0.98 mSv (range: 0.39-3.2 mSv), and mean estimated effective radiation dose was 1.1 ± 0.68 mSv. Median total dose length product (DLP) was 25 mGy cm (range: 10-83 mGy cm), and mean total DLP was 28 ± 18 mGy cm. Median CTDI volume was 3.8 mGy (range: 2.5-14.6 mGy), and mean CTDI volume was 5.0 ± 3.2 mGy.
CONCLUSIONS: We conclude that modern cardiac MDCTA is the best imaging modality to guide management in both preintervention and postintervention APVR patients. In this study, we describe comprehensive radiation exposure parameters in infants and children with APVR.
Full text links
Trending Papers
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Abdominal wall closure.British Journal of Surgery 2023 September 16
Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement.Nature Reviews. Endocrinology 2023 September 6
MRI abnormalities in Creutzfeldt-Jakob disease and other rapidly progressive dementia.Journal of Neurology 2023 September 13
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app