JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization and Antibacterial Properties of Autoclaved Carboxylated Wood Nanocellulose.

Biomacromolecules 2021 July 13
Cellulose nanofibrils (CNFs) were obtained by applying a chemical pretreatment consisting of autoclaving the pulp fibers in sodium hydroxide, combined with 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation. Three levels of sodium hypochlorite were applied (2.5, 3.8, and 6.0 mmol/g) to obtain CNF qualities (CNF_2.5, CNF_3.8, and CNF_6.0) with varying content of carboxyl groups, that is, 1036, 1285, and 1593 μmol/g cellulose. The cytotoxicity and skin irritation potential (indirect tests) of the CNFs were determined according to standardized in vitro testing for medical devices. We here demonstrate that autoclaving (121 °C, 20 min), which was used to sterilize the gels, caused a modification of the CNF characteristics. This was confirmed by a reduction in the viscosity of the gels, a morphological change of the nanofibrils, by an increase of the ultraviolet-visible absorbance maxima at 250 nm, reduction of the absolute zeta potential, and by an increase in aldehyde content and reducing sugars after autoclaving. Fourier-transform infrared spectroscopy and wide-angle X-ray scattering complemented an extensive characterization of the CNF gels, before and after autoclaving. The antibacterial properties of autoclaved carboxylated CNFs were demonstrated in vitro (bacterial survival and swimming assays) on Pseudomonas aeruginosa and Staphylococcus aureus . Importantly, a mouse in vivo surgical-site infection model on S. aureus revealed that CNF_3.8 showed pronounced antibacterial effect and performed as good as the antiseptic Prontosan wound gel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app