Add like
Add dislike
Add to saved papers

Automated Coordination Strategy Design Using Genetic Programming for Dynamic Multipoint Dynamic Aggregation.

The multipoint dynamic aggregation (MPDA) problem of the multirobot system is of great significance for its real-world applications such as bush fire elimination. The problem is to design the optimal plan for a set of heterogeneous robots to complete some geographically distributed tasks collaboratively. In this article, we consider the dynamic version of the problem, where new tasks keep appearing after the robots are dispatched from the depot. The dynamic MPDA problem is a complicated optimization problem due to several characteristics, such as the collaboration of robots, the accumulative task demand, the relationships among robots and tasks, and the unpredictable task arrivals. In this article, a new model of the problem considering these characteristics is proposed. To solve the problem, we develop a new genetic programming hyperheuristic (GPHH) method to evolve reactive coordination strategies (RCSs), which can guide the robots to make decisions in real time. The proposed GPHH method contains a newly designed effective RCS heuristic template to generate the execution plan for the robots according to a GP tree. A new terminal set of features related to both robots and tasks and a cluster filter that assigns the robots to urgent tasks are designed. The experimental results show that the proposed GPHH significantly outperformed the state-of-the-art methods. Through further analysis, useful insights such as how to distribute and coordinate robots to execute different types of tasks are discovered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app