Add like
Add dislike
Add to saved papers

Brain-wide functional diffuse optical tomography of resting state networks.

OBJECTIVE: Diffuse optical tomography (DOT) has the potential in reconstructing resting-state networks (RSNs) in human brains with high spatio-temporal resolutions and multiple contrasts. While several RSNs have been reported and successfully reconstructed using DOT, its full potential in recovering a collective set of distributed brain-wide networks with the number of RSNs close to those reported using functional magnetic resonance imaging (fMRI) has not been demonstrated.

APPROACH: The present study developed a novel brain-wide DOT (BW-DOT) framework that integrates a cap-based whole-head optode placement system with multiple computational approaches, i.e., finite-element modeling, inverse source reconstruction, data-driven pattern recognition, and statistical correlation tomography, to reconstruct RSNs in dual contrasts of oxygenated (HbO) and deoxygenated hemoglobins (HbR).

MAIN RESULTS: Our results from the proposed framework revealed a comprehensive set of RSNs and their subnetworks, which collectively cover almost the entire neocortical surface of the human brain, both at the group level and individual participants. The spatial patterns of these DOT RSNs suggest statistically significant similarities to fMRI RSN templates. Our results also reported the networks involving the medial prefrontal cortex and precuneus that had been missed in previous DOT studies. Furthermore, RSNs obtained from HbO and HbR suggest similarity in terms of both the number of RSN types reconstructed and their corresponding spatial patterns, while HbR RSNs show statistically more similarity to fMRI RSN templates and HbO RSNs indicate more bilateral patterns over two hemispheres. In addition, the BW-DOT framework allowed consistent reconstructions of RSNs across individuals and across recording sessions, indicating its high robustness and reproducibility, respectively.

SIGNIFICANCE: Our present results suggest the feasibility of using the brain-wide DOT, as a neuroimaging tool, in simultaneously mapping multiple RSNs and its potential values in studying RSNs, particularly in patient populations under diverse conditions and needs, due to its advantages in accessibility over fMRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app