Add like
Add dislike
Add to saved papers

Spectroscopy-Assisted Label-free Molecular Analysis of Live Cell Surface with Vertically Aligned Plasmonic Nanopillars.

Small 2021 May 5
A generalized label-free platform for surface-selective molecular sensing in living cells can transform the ability to examine complex events in the cell membrane. While vertically aligned semiconductor and metal-semiconductor hybrid nanopillars have rapidly surfaced for stimulating and probing the intracellular environment, the potential of such constructs for selectively interrogating the cell membrane is surprisingly underappreciated. In this work, a new platform, entitled nano-PROD (nano-pillar based Raman optical detection), enables molecular recording by probing fundamental vibrational modes of membrane constituents of cells adherent on a large-area silver-coated silicon nanopillar substrate fabricated using a precursor solution-based nanomanufacturing process. It is shown that the nano-PROD platform sustains live cells in near-physiological conditions, which can be directly profiled using surface-enhanced Raman spectroscopy due to the confined electromagnetic field enhancement. The experimental results highlight the utility of the platform in probing specific cell surface markers for accurately recognizing the phenotypically identical prostate cancer cells, differing only in prostate-specific membrane antigen expression. Due to its tunability, nano-PROD has the promise to be readily extendable to other applications that can leverage its unique combination of nanoscale topographic features and molecular sensing capabilities, from stain-free cytopathology inspection to understanding spatio-mechanical regulation in membrane receptor function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app