Add like
Add dislike
Add to saved papers

First time β-farnesene production by the versatile bacterium Cupriavidus necator.

BACKGROUND: Terpenes are remarkably diverse natural structures, which can be formed via two different pathways leading to two common intermediates. Among those, sesquiterpenes represent a variety of industrially relevant products. One important industrially produced product is β-farnesene as a precursor for a jet fuel additive. So far, microbial terpene production has been mostly limited to known production hosts, which are only able to grow on heterotrophic substrates.

RESULTS: In this paper, we for the first time describe β-farnesene production by the versatile bacterial host Cupriavidus necator on fructose, which is known to grow hetero- and autotrophically and even in bioelectrochemical systems. We were able to show a growth-dependent production of β-farnesene by expressing the β-farnesene synthase from Artemisia annua in C. necator H16 PHB- 4. Additionally, we performed a scale-up in a parallel reactor system with production titers of 26.3 ± 1.3 µM β-farnesene with a fed-batch process.

CONCLUSIONS: The β-farnesene production titers reported in this paper are not in the same range as titers published with known heterotrophic producers E. coli or S. cerevisiae. However, this proof-of-principle study with C. necator as production host opens new synthesis routes toward a sustainable economy and leaves room for further optimizations, which have been already performed with the known production strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app