Add like
Add dislike
Add to saved papers

Nocturnal cerebral tissue oxygenation in lowlanders with chronic obstructive pulmonary disease travelling to an altitude of 2,590 m: Data from a randomised trial.

Altitude exposure induces hypoxaemia in patients with chronic obstructive pulmonary disease (COPD), particularly during sleep. The present study tested the hypothesis in patients with COPD staying overnight at high altitude that nocturnal arterial hypoxaemia is associated with impaired cerebral tissue oxygenation (CTO). A total of 35 patients with moderate-to-severe COPD, living at <800 m (mean [SD] age 62.4 [12.3] years, forced expiratory volume in 1 s [FEV1 ] 61 [16]% predicted, awake pulse oximetry ≥92%) underwent continuous overnight monitoring of pulse oximetry (oxygen saturation [SpO2 ]) and near-infrared spectroscopy of prefrontal CTO, respectively, at 490 m and 2,590 m. Regression analysis was used to evaluate whether nocturnal arterial desaturation (COPDDesat , SpO2 <90% for >30% of night-time) at 490 m predicted CTO at 2,590 m when controlling for baseline variables. At 2,590 m, mean nocturnal SpO2 and CTO were decreased versus 490 m, mean change -8.8% (95% confidence interval [CI] -10.0 to -7.6) and -3.6% (95% CI -5.7 to -1.6), difference in change ΔCTO-ΔSpO2 5.2% (95% CI 3.0 to 7.3; p < .001). Moreover, frequent cyclic desaturations (≥4% dips/hr) occurred in SpO2 and CTO, mean change from 490 m 35.3/hr (95% CI 24.9 to 45.7) and 3.4/hr (95% CI 1.4 to 5.3), difference in change ΔCTO-ΔSpO2 -32.8/hr (95% CI -43.8 to -21.8; p < .001). Regression analysis confirmed an association of COPDDesat with lower CTO at 2,590 m (coefficient -7.6%, 95% CI -13.2 to -2.0; p = .007) when controlling for several confounders. We conclude that lowlanders with COPD staying overnight at 2,590 m experience altitude-induced hypoxaemia and periodic breathing in association with sustained and intermittent cerebral deoxygenation. Although less pronounced than the arterial deoxygenation, the altitude-induced cerebral tissue deoxygenation may represent a risk of brain dysfunction, especially in patients with COPD with nocturnal hypoxaemia at low altitude.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app