JOURNAL ARTICLE

C5aR inhibition of non-immune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia

Wilfried Posch, Jonathan Vosper, Asma Noureen, Viktoria Zaderer, Christina Witting, Giulia Bertacchi, Ronald Gstir, Przemyslaw A Filipek, Günther K Bonn, Lukas A Huber, Rosa Bellmann-Weiler, Cornelia Lass-Flörl, Doris Wilflingseder
Journal of Allergy and Clinical Immunology 2021 April 11
33852936

BACKGROUND: Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe SARS-CoV-2 infections and is associated with enhanced pathogenicity and mortality.

OBJECTIVE: Complement hyper activation promotes lung injury and was observed in patients suffering from MERS-CoV, SARS-CoV-1 and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells upon exposure to SARS-CoV-2 in terms of complement C3-mediated effects.

METHODS: For this, we used highly differentiated primary human 3D tissue models infected with SARS-CoV-2 patient isolates. Upon infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses and TEER measurements.

RESULTS: Here we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2-infected 3D cultures secreted significantly higher levels of C3a and the pro-inflammatory cytokines IL-6, MCP-1, IL-1α and RANTES.

CONCLUSION: Crucially, we illustrate here for the first time, that targeting the anaphylotoxin receptors C3aR and C5aR in non-immune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.

Full Text Links

We have located links that may give you full text access.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
33852936
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"