Add like
Add dislike
Add to saved papers

C5aR inhibition of non-immune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia.

BACKGROUND: Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe SARS-CoV-2 infections and is associated with enhanced pathogenicity and mortality.

OBJECTIVE: Complement hyper activation promotes lung injury and was observed in patients suffering from MERS-CoV, SARS-CoV-1 and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells upon exposure to SARS-CoV-2 in terms of complement C3-mediated effects.

METHODS: For this, we used highly differentiated primary human 3D tissue models infected with SARS-CoV-2 patient isolates. Upon infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses and TEER measurements.

RESULTS: Here we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2-infected 3D cultures secreted significantly higher levels of C3a and the pro-inflammatory cytokines IL-6, MCP-1, IL-1α and RANTES.

CONCLUSION: Crucially, we illustrate here for the first time, that targeting the anaphylotoxin receptors C3aR and C5aR in non-immune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app