JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Discovery of Novel Thiophene-arylamide Derivatives as DprE1 Inhibitors with Potent Antimycobacterial Activities.

In this study, we report the design and synthesis of a series of novel thiophene-arylamide compounds derived from the noncovalent decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) inhibitor TCA1 through a structure-based scaffold hopping strategy. Systematic optimization of the two side chains flanking the thiophene core led to new lead compounds bearing a thiophene-arylamide scaffold with potent antimycobacterial activity and low cytotoxicity. Compounds 23j , 24f , 25a , and 25b exhibited potent in vitro activity against both drug-susceptible (minimum inhibitory concentration (MIC) = 0.02-0.12 μg/mL) and drug-resistant (MIC = 0.031-0.24 μg/mL) tuberculosis strains while retaining potent DprE1 inhibition (half maximal inhibitory concentration (IC50 ) = 0.2-0.9 μg/mL) and good intracellular antimycobacterial activity. In addition, these compounds showed good hepatocyte stability and low inhibition of the human ether-à-go-go related gene (hERG) channel. The representative compound 25a with acceptable pharmacokinetic property demonstrated significant bactericidal activity in an acute mouse model of tuberculosis. Moreover, the molecular docking study of template compound 23j provides new insight into the discovery of novel antitubercular agents targeting DprE1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app