Add like
Add dislike
Add to saved papers

Long-term in situ bioelectrochemical monitoring of biohythane process: Metabolic interactions and microbial evolution.

Microbial stability and evolution are a critical aspect for biosensors, especially in detecting dynamic and emerging anaerobic biohythane production. In this study, two upflow air-cathode chamber microbial fuel cells (UMFCs) were developed for in situ monitoring of the biohydrogen and biomethane reactors under a COD range of 1000-6000 mg/L and 150-1000 mg/L, respectively. Illumina MiSeq sequencing evidenced the dramatic shift of dominant microbial communities in UMFCs from hydrolytic and acidification bacteria (Clostridiaceae_1, Ruminococcaceae, Peptostreptococcaceae) to acetate-oxidizing bacteria (Synergistaceae, Dysgonomonadaceae, Spirochaetaceae). In addition, exoelectroactive bacteria evaluated from Enterobacteriaceae and Burkholderiaceae to Desulfovibrionaceae and Propionibacteriaceae. Especially, Hydrogenotrophic methanogens (Methanobacteriaceae) were abundant at 93.41% in UMFC (for monitoring hydrogen reactor), which was speculated to be a major metabolic pathway for methane production. Principal component analysis revealed a similarity in microbial structure between UMFCs and methane bioreactors. Microbial network analysis suggested a more stable community structure of UMFCs with 205 days' operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app