Add like
Add dislike
Add to saved papers

[10]annulene: Electrocyclization mechanisms.

The mechanism of 6-π electrocyclization of all-cis, mono-trans, and double-trans [10]annulene to yield 4a,8a-dihydronaphthalene has been explored at various quantum-chemical methods. The mono-trans configuration cyclizes preferentially to trans-4a,8a-dihydronaphthalene, in agreement with the experimental results. The cyclization of the all-cis configuration requires firstly a bond-shifting to the naphthalene-like conformation of double-trans [10]annulene, which is the rate-limiting step, and finally its azulene-like conformation electrocyclizes quickly to cis-4a,8a-dihydronaphthalene. Its experimental rate coefficient is consistent with the computed one for the cyclization of the all-cis configuration, unlike the calculated one for the double-trans configuration. These results confirm the configurations assigned by Masamune et al. to the two isomers which they isolated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app