Add like
Add dislike
Add to saved papers

Characteristics of a bolus created using thermoplastic sheets for postmastectomy radiation therapy.

This study applied a "shell bolus," an immobilizing thermoplastic shell locally thickened with extra layers over the radiation target, during postmastectomy radiation therapy (PMRT). We performed ion chamber and film measurements for a solid water phantom for thermoplastic sheets and a gel bolus for dosimetric characterization using a 6-MV X-ray flattening-filter-free (FFF) beam. The air gaps between the body surface for the gel and shell bolus were measured using computed tomography (CT) images in patients who underwent PMRT. This included seven and 13 patients treated with the gel and shell boluses, respectively. A comparison of the dose differences between a 10-mm gel bolus and a 9.6-mm-thick thermoplastic sheet at the surface and 5 cm below the surface showed a 4.2% higher surface dose and 0.5% lower dose at 5-cm depth for the thermoplastic sheet compared to those for the gel bolus. The mean (p = 0.029) and maximum (p < 0.001) air gaps of the shell bolus were significantly thinner than those of the gel bolus. Thus, the shell bolus provided a close fit and robust bolus effect. In addition, the shell bolus reduced respiratory motion and eliminated the need for skin marking. Therefore, this system can be effectively used as a bolus for PMRT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app