Add like
Add dislike
Add to saved papers

Small-Molecule Natural Product Physachenolide C Potentiates Immunotherapy Efficacy by Targeting BET Proteins.

Cancer Research 2021 April 10
Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product (NP) of the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of anti-apoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a pro-apoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared to individual agents. Additionally, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism of action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce anti-apoptotic proteins and enhance caspase 8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app