Add like
Add dislike
Add to saved papers

Dosimetric effect of nanoparticles in the breast cancer treatment using INTRABEAM® system with spherical applicators in the presence of tissue heterogeneities: A Monte Carlo study.

Using the 50 kV INTRABEAM® IORT system after breast-conserving surgery: tumor recurrence and organs at risk (OARs), such as the lung and heart, long-term complications remain the challenging problems for breast cancer patients. So, the objective of this study was to address these two problems with the help of high atomic number nanoparticles (NPs). A Monte Carlo (MC) Simulation type EGSnrc C++ class library (egspp) with its Easy particle propagation (Epp) user code was used. The simulation was validated against the measured depth dose data found in our previous study [1] using the gamma index and passed 2%/2 mm acceptance criteria in the gamma analysis. Gold (Au) NPs were selected after comparing Dose Enhancement Ratios (DERs) of bismuth (Bi), Au, and platinum (Pt) NPs which were calculated from the simulated results. As a result, 0.02, 0.2, 2, 10, and 20 mg-Au/g-breast tissue were used throughout this study. These particles were not distributed in discrete but in a uniform concentration. For 20 mg-Au/g-breast tissue, the DERs were 3.6, 0.420, and 0.323 for breast tissue, lung and heart, respectively, using the 1.5-cm-diameter applicator (AP) and 3.61, 0.428, and 0.335 for breast tissue, lung, and heart using the 5-cm-diameter applicator, respectively. DER increased with the decrease in the depth of tissues and increase in the effective atomic number (Zeff) and concentration of Au NPs, however, there was no significant change as AP sizes increased. Therefore, Au NPs showed dual advantages such as dose enhancement within the tumor bed and dose reduction in the OARs (heart and lung).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app